

Current Limit Function. DIP (2 Form A) 8-pin type. Reinforced insulation 5,000V type.

GU PhotoMOS (AQW210HL)

mm inch

FEATURES

1. Current Limit Function

To control an over current from o wing, the current limit function has been realized. It keeps an output current at a constant value when the current reaches a speci ed current limit value.

2. Enhancing the capability of surge resistance between output terminals The current limit function controls the ON time surge current to enhance the capability of surge resistance between output terminals.

3. Reinforced insulation 5,000 V type More than 0.4 mm internal insulation distance between inputs and outputs. Con-forms to EN41003, EN60950 (reinforced insulation).

4. Compact 8-pin DIP size

The device comes in a compact (W)6.4 \times (L)9.86 \times (H) 3.2mm (W).252 \times (L).388 \times (H).126inch, 8-pin DIP size (through hole terminal type)

- 5. Applicable for 2 Form A use as well as two independent 1 Form A use.
- 6. Controls low-level analog signals
- 7. High sensitivity, high speed response.

Can control a maximum 0.12 A load current with a 5 mA input current. Fast operation speed of 0.5ms (typ.)

8. Low-level off state leakage current

TYPICAL APPLICATIONS

- Telephone equipment
- Modem

TYPES

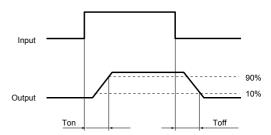
Туре	I/O isolation voltage	Output rating*			Par	Packing quantity			
				Through hole terminal	Surface-mount terminal				
		Load I	Lood			Tape and reel packing style			Tono and
			Load Tube pac		king style	Picked from the 1/2/3/4-pin side	Picked from the 5/6/7/8-pin side	Tube	Tape and reel
AC/DC type	Reinforced 5,000 V AC	350 V	120 mA	AQW210HL	AQW210HLA	AQW210HLAX	AQW210HLAZ	1 tube contains 40 pcs. 1 batch contains 400 pcs.	1,000 pcs.

^{*}Indicate the peak AC and DC values.

Note: For space reasons, the SMD terminal shape indicator "A" and the package type indicator "X" and "Z" are omitted from the seal.

RATING

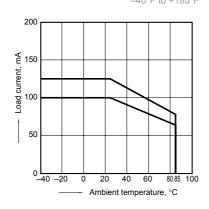
1. Absolute maximum ratings (Ambient temperature: 25°C 77°F)


Item		Symbol	AQW210HL(A)	Remarks
	LED forward current	I F	50 mA	
Input	LED reverse voltage	VR	5 V	
	Peak forward current	I FP	1 A	f = 100 Hz, Duty factor = 0.1%
	Power dissipation	Pin	75 mW	
Output	Load voltage (peak AC)	VL	350 V	
	Continuous load current	lı	0.1 A (0.12 A)	(): in case of using only 1 channel Peak AC, DC
	Power dissipation	Pout	800 mW	
Total power dissipation		P⊤	850 mW	
I/O isolation voltage		Viso	5,000 V AC	
Tempera	ature Operating	Topr	–40°C to +85°C –40°F to +185°F	Non-condensing at low temperatures
limits	Storage	T _{stg}	-40°C to +100°C -40°F to +212°F	

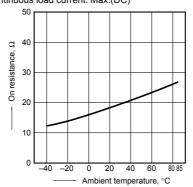
2. Electrical characteristics (Ambient temperature: 25°C 77°F)

Item			Symbol	AQW210HL(A)	Condition	
	LED operate	Typical	IFon	1.2 mA	I∟ = Max.	
	current	Maximum	IFon	3.0 mA		
Input	LED turn off	Minimum		0.4 mA	IL = Max.	
iriput	current	Typical	IF-off	1.1 mA		
	LED dropout	Minimum	VF	1.25 (1.14 V at I _F = 5 mA)	I _F = 50 mA	
	voltage	Typical	VF	1.5 V		
	On resistance	Typical	Ron	20Ω	$I_F = 5 \text{ mA}$ $I_L = \text{Max.}$ Within 1 s on time	
	Off resistance	Maximum	Kon	25Ω		
Output	Off state leakage current	Maximum	Leak	1μΑ	I _F = 0 mA V _L = Max.	
	Current limit	Typical	_	0.18 A	I _F = 5 mA	
	Turn on time*	Typical	Ton	0.5 ms	I _F = 5 mA I _L = Max.	
	Turri on time	Maximum	Ion	2.0 ms		
	Turn off time*	Typical	Toff	0.08 ms	I _F = 5 mA I _L = Max.	
Transfer	Turri on time	Maximum	loff	1.0 ms		
characteristics	I/O canacitance	Typical	Ciso	0.8 pF	f = 1 MHz V _B = 0 V	
	I/O capacitance	Maximum	Ciso	1.5 pF		
	Initial I/O isolation resistance	Minimum	Riso	1,000 ΜΩ	500 V DC	

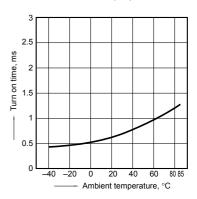
Note: Recommendable LED forward current I_F= 5 to 10 mA.


*Turn on/Turn off time

REFERENCE DATA

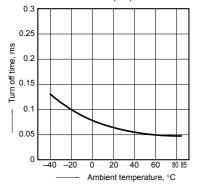

1. Load current vs. ambient temperature characteristics

Allowable ambient temperature: -40°C to +85°C -40°F to +185°F

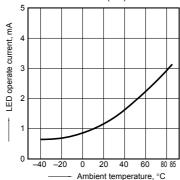

2. On resistance vs. ambient temperature characteristics

Measured portion: between terminals 5 and 6, 7 and 8; LED current: 5 mA; Load voltage: Max. (DC) Continuous load current: Max.(DC)

3. Turn on time vs. ambient temperature characteristics

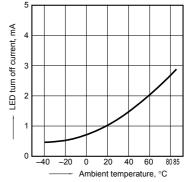

LED current: 5 mA; Load voltage: Max.(DC); Continuous load current: Max.(DC)

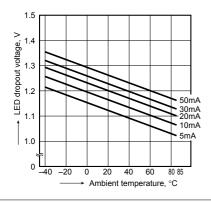
GU PhotoMOS (AQW210HL)


4. Turn off time vs. ambient temperature characteristics

LED current: 5 mA; Load voltage: Max.(DC); Continuous load current: Max.(DC)

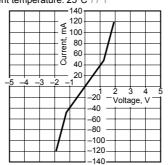
5. LED operate current vs. ambient temperature characteristics Load voltage: Max.(DC);


Continuous load current: Max.(DC)

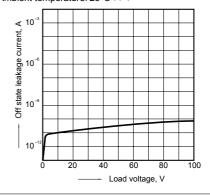

6. LED turn off current vs. ambient temperature characteristics

Load voltage: Max.(DC);

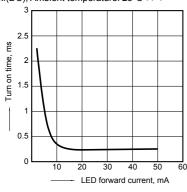
Continuous load current: Max.(DC)



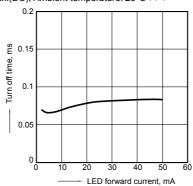
7. LED dropout voltage vs. ambient temperature characteristics LED current: 5 to 50 mA


8. Current vs. voltage characteristics of output at MOS portion

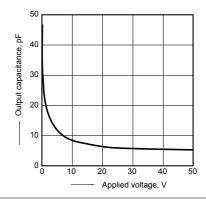
Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: 25°C 77°F


9. Off state leakage current vs. load voltage characteristics

Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: 25°C 77°F


10. Turn on time vs. LED forward current characteristics

Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max.(DC); Continuous load current: Max.(DC); Ambient temperature: $25^{\circ}C$ $77^{\circ}F$


11. Turn off time vs. LED forward current characteristics

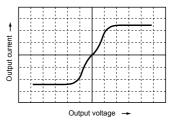
Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max.(DC); Continuous load current: Max.(DC); Ambient temperature: $25^{\circ}C$ $77^{\circ}F$

12. Output capacitance vs. applied voltage characteristics

Measured portion: between terminals 5 and 6, 7 and 8; Frequency: 1 MHz; Ambient temperature: 25°C 77°F

What is current limit

When a load current reaches the speci ed output control current, a current limit function works against the load current to keep the current a constant value.


The current limit circuit built into the PhotoMOS relay thus controls the instantaneous load current to effectively ensure circuit safety.

This safety feature protects circuits downstream of the PhotoMOS relay against over-current.

But, if the current-limiting feature is used longer than the speci ed time, the PhotoMOS relay can be destroyed. Therefore, set the output loss to the max. rate or less.

Comparison of output voltage and output current characteristics

V-I Characteristics

